-U	What is Log?	
-	Student Activity	

Open the TI-Nspire document What_is_Log.tns.

You may have noticed that above w is [log]. What does *log* mean? Why is [log] placed above an exponential key? You will investigate these questions in this activity.

Move to page 1.2.

- The graph of the function f(x) = 2^x is shown.
 a. What are the domain and range of f(x) ?
 - b. Recall that $f(x) = 2^x$ is a one-to-one function, so it has an inverse reflected over the line y = x. What are the domain and range of $f^{-1}(x)$?
 - c. Point *P* is a point on f(x). Move the Show Reflection slider to Yes to and then move point *P*. As you do so, point *P'* invisibly traces the graph of $f^{-1}(x)$. Since f(x) can be written as $y = 2^x$, write a corresponding equation for the inverse.
 - d. The equation $x = 2^{y}$ cannot be written as a function of y in terms of x without new notation. Move the Show Function slider to Yes. The inverse of f(x) is actually $f^{-1}(x) = \log_2(x)$. In general, $\log_b x = y$ is equivalent to $b^{y} = x$ for x > 0, b > 0 and $b \neq 1$. Why do you think x and b must be greater than 0? Why can b not be equal to 1?

Class

Name

I.1 1.2 1.3 ▶ what_is_log
 What is Log?
 Turn the page to begin investigating logarithms.

i,	What is Log?	Name	
•	Student Activity	Class_	

e. Move point *P* so that its coordinates are (1, 2). The point (1, 2) on $f(x) = 2^x$ indicates that $2^1 = 2$. *P'* has the coordinates (2, 1). The point (2, 1) on $f^{-1}(x) = \log_2(x)$

indicates that $\log_2 2 = 1$. Use this relationship between exponential expressions and logarithmic expressions to complete the following table. (Move point *P* as necessary.)

Р	Ρ'	Exponential Expression	Logarithmic Expression
(1, 2)	(2, 1)	21 = 2	$\log_2 2 = 1$
(2, 4)			
	(8, 3)		
		2 ⁰ = 1	
		$2^{-1} = \frac{1}{2}$	
$\left(-2, \frac{1}{4}\right)$			
			$\log_2 \frac{1}{8} = -3$

2. You have discussed the idea of reflecting the exponential function over the line y = x. The result of this reflection is the logarithmic function. Now we will discuss any tabular relationships that are formed between an exponential function and a logarithmic function.

Using the first and second columns from the table above, fill in the following tables.

x	$f(x) = 2^x$
-3	
-2	
-1	
0	
1	
2	
3	

2

What is Log?

Student Activity

Name	

Class

¹ / ₈	
1/4	
¹ / ₂	
1	
2	
4	
8	

- (a) Briefly explain your process of filling in the tables on the previous page.
- (b) With a classmate, discuss and describe the patterns you see in each individual column.
- (c) Write down a rule for each table that you can use to classify the function as either exponential or logarithmic.

Move to page 1.3.

3. Solve the logarithmic equation log₂ 32 = y using the patterns from question 1. Then, use the slider to change the *n*-value to solve the logarithmic equation. How does the exponential equation verify your result?

Move to page 2.1.

4. Solve the equation $\log_4 \frac{1}{256} = y$. Then, use the slider to change the *n*-value to solve the logarithmic equation. How does the exponential equation verify your result?

-i	What is Log?	
-	Student Activity	

Name	
Class	

5. May solved the logarithmic equation $\log_4 16 = y$. She says the answer is 4 since $4 \times 4 = 16$. Is her answer correct? Why or why not?

6. Alex says that when solving a logarithmic equation in the form $\log_b a = y$, he can rewrite it as $b^a = y$. Is this a good strategy? Why or why not?